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Question 1 [12 marks] 

1.1. Define the following terms: 

1.1.1. Probability function [3] 

1.1.2. Power set [1] 

1.1.3. o-algebra [2] 

1.1.4. Consider an experiment of rolling a die with six faces once. 

1.1.4.1. Show that the set a(X) = {9,S, {1,2,4}, {3,5,6}} is a sigma algebra, where S 

represents the sample space for a random experiment of rolling a die with six 

faces. [3] 

1.1.4.2. Givenaset Y = {(1,2,3.5), {4}, {6}}, then generate the smallest sigma algebra, a(Y) 

that contains a set Y. [3] 

Question 2 [24 marks] 

2A, 

2:2: 

2.3. 

2.4. 

Let X be a continuous random variable with p.d.f. given by 

x+1, for-1<x<0O, 

f(x) {ins for0<sx<1l1, 

0, otherwise. 

Then find cumulative density function of X [7] 

Suppose that the joint CDF of a two dimensional continuous random variable is given by 

1—e-*-—eY¥+e"F*), ifx>0; y>0 F. x; = ? ’ ’ 

xv (%y) 0, otherwise. 

Then find the joint p.d.f. of X and Y. [4] 

Consider the following joint pdf of X and Y. [7] 

_ (2, x>0; y>0; x+y<1, 

fay) = {0 elsewhere. 

2.3.1. Find the marginal probability density function of f(y) [2] 

2.3.2. Find the conditional probability density function of X given Y = y, fy(x|lY = y) [2] 

, 1], 1 2.3.3. Find P(x <>|Y =-) [3] 

Let Y;,¥2, and Y3 be three random variables with E(Y,) = 2, E(¥2) = 3, E(¥3) = 2, of, = 2, 

OF, = 3; OF, = 1, OY, Y, = —0.6, Oy, Y, = 0.3, and OY, y, = 2. 

2.4.1. Find the expected value and variance of U = 2Y, — 3Y, + Y3 [2] 

2.4.2. IfW = Y, + 2Y3, find the covariance between U and W [4] 
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QUESTION 3 [27 marks] 

3.1. Let X bea discrete random variable with a probability mass function P(x), then show that the 

moment generating function of X is a function of all the moments 4; about the origin which 

is given by 

fai t , t2 , tk , 

My(t) = E(e JS lt eit ypbe te tee to 

i 

Hint: use Taylor's series expansion: e* = re, = [5] 

3.2. Let X1,X2,...,X, be a random sample from a Gamma distribution with parameters @ and @, that 

IS 

1 gs, -% 
Fmla,0) =tFepae* 8 % form > 0; a>0; 6>0, 

0 otherwise. 

a 

3.2.1. Show that the moment generating function of X; is given by Mx, (t) = (=) [6] 

3.2.2. Find the mean of X using the moment generating function of X. [4] 

3.3. Suppose that X is a random variable having a binomial distribution with the parameters n and p 

(i.e., X~Bin(n, p)) 

3.3.1. Find the cumulant generating function of X and find the first cumulant. 

Hint: My(t) = (1-p(1—e*))” [4] 
3.3.2. If we define another random variable Y = aX + b, then derive the moment 

generating function of Y, where a and b be any constant numbers. [3] 

3.4. Let X and Y be two continuous random variables with f(x) and g(y) bea pdf of X and Y, 

respectively, then show that E[g(y)] = E[E[g(y)X]]. [5] 

Question 4 [20 marks] 

4.1. Suppose that X and Y are two independent random variables following a chi-square distribution 

with m and n degrees of freedom, respectively. Use the moment generating function to show 
m 

that X + Y~y2(m +n). (Hint: My(t) = (= y?). (7] 

4.2. If X~Poisson (A), find E(X) and Var(X) using the characteristic function of X. 

4.2.1. Show that the characteristic function of X is given by by (t) = er(e"-D [5] 

4.2.2. Find E(X) and Var(X) using the characteristic function of X. [8] 
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QUESTION 5 [17 marks] 

5.1. Let X, and X2 be independent random variables with the joint probability density function given 

  

by 
—(x1+X2) if 4 _ fe , if x1 > 0; x2 > 0, 

X4,X2) = . 
fA, %2) 0, otherwise. 

Find the joint probability density function of Y, = X, + Xz, andY, = ee [10] 
1 2 

5.2. Let X and Y be independent Poisson random variables with parameters A, and Az. Use the 

convolution formula to show that X + Y isa Poisson random variable with parameter A, + Az. 

[7] 

=== END OF PAPER=== 
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